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Full-genome	 analysis	 was	 conducted	 on	 the	 first	 
isolate	of	a	highly	pathogenic	avian	influenza	A(H5N1)	virus	
from	a	human	 in	North	America.	The	virus	has	a	hemag-
glutinin	gene	of	clade	2.3.2.1c	and	is	a	reassortant	with	an	
H9N2	subtype	lineage	polymerase	basic	2	gene.	No	muta-
tions	 conferring	 resistance	 to	 adamantanes	or	 neuramini-
dase	inhibitors	were	found.

Since the 1997 emergence of highly pathogenic avian in-
fluenza (HPAI) A(H5N1) virus in Hong Kong, China, 

648 HPAI A(H5N1) infections and 384 associated deaths 
in humans have been reported. During 2013, Cambodia re-
ported the most human infections, followed by Egypt, In-
donesia, China, and Vietnam (www.who.int/influenza/hu-
man_animal_interface/H5N1_cumulative_table_archives/
en/, December 10, 2013, report). In December 2013, an 
HPAI A(H5N1) infection was reported in a Canadian resi-
dent who recently returned from China. No human or poul-
try HPAI A(H5N1) infections had been previously reported 
in North America.

Case Report and Laboratory Investigations
Preliminary details of this case have been reported 

(1) (online Technical Appendix 1, wwwnc.cdc.gov/EID/
article/20/5/14-0164-Techapp1.pdf). The patient initial-
ly sought care for respiratory symptoms; however, the  

probable cause of death was listed as meningoencephali-
tis, an unusual outcome for HPAI A(H5N1) infections in 
humans. Detailed interviews with close contacts have not 
identified exposure to infected avian sources or environ-
mental contamination, although these investigations are 
continuing. Because symptom onset occurred during a re-
turn flight from China, it is probable that the patient was 
exposed to the virus while in China.

Nasopharyngeal swab (NP) samples, bronchoalveolar 
lavage (BAL), and cerebrospinal fluid (CSF) samples tested 
positive for influenza A(H5N1) virus by various molecular 
testing methods, including sequencing, at the Provincial 
Laboratory for Public Health and the National Microbiol-
ogy Laboratory, Public Health Agency of Canada (1). An 
isolate cultured from BAL (A/Alberta/01/2014) under-
went full-genome sequencing (methods available in online 
Technical Appendix 1); analysis results are presented here.

Partial sequences of virus from the primary specimens 
(shown in parentheses) included 1,378 bp of the hemag-
glutinin (HA) gene (CSF, BAL, NP), 1,350 bp of the neur-
aminidase gene (BAL), 810 bp of the matrix gene (NP), 
and 687 bp of the polymerase basic 2 (PB2) gene (NP). 
These sequences were identical to corresponding sequenc-
es obtained from the isolate, suggesting the absence of cell 
culture–induced changes.

BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) anal-
ysis of each gene of A/Alberta/01/2014 showed that 7 of 
8 genes shared ≥99% identity at the nucleotide and protein 
levels with HPAI A(H5N1) viruses of avian origin. How-
ever, the PB2 gene showed 98% nt similarity and 99% aa 
identity to avian influenza A(H9N2) viruses collected in 
China. Phylogenetic analysis of each gene (online Tech-
nical Appendix 2, wwwnc.cdc.gov/EID/article/20/5/14-
0164-Techapp2.pdf) with sequences from related viruses 
confirmed that only the PB2 gene resulted from reassort-
ment with an avian influenza A virus containing an H9N2 
subtype lineage PB2 gene (Figure 1). Phylogenetic analysis 
of the HA gene demonstrated that the virus belongs to clade 
2.3.2.1c (2) (Figure 2), which has been detected in many 
countries and has recently been reported in China, Viet-
nam, and Indonesia (2). The HA gene of A/Alberta/01/2014 
(H5N1) was most closely related to the sequence of an 
HPAI A(H5N1) virus from a tiger that died in 2013 at a 
zoo in Jiangsu, China. This combination of clade 2.3.2.1c 
lineage HA, neuraminidase, and internal gene segments de-
rived from influenza A(H5N1) viruses and an H9N2 sub-
type lineage PB2 gene indicated that this virus is a previ-
ously undescribed genotype of HPAI A(H5N1).

To assess the virus for molecular markers of pandemic 
risk, we reviewed all protein sequences for mutations listed 
in the H5N1 Genetic Changes Inventory (3).The HA pro-
tein possessed a multibasic amino acid cleavage site motif 
(PQRERRRKR*G) similar to other clade 2.3.2.1 viruses 
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(4). The sequence of the 220-loop receptor binding site 
(RBS) contained the typical avian amino acids, Q222/
G224, predictive of a preference for the avian α2,3 rather 
than the human α2,6 sialic acid (SA) host cell receptor (5); 
all HA gene numbering is based on H5 viruses unless oth-
erwise indicated. The RBS sequence was identical in the 
NP and BAL samples, suggesting the absence of adaptive 
changes in the cultured isolate. The G221R substitution, 
uncommon in HPAI A(H5N1) virus, was detected in the 

RBS. Previously reported in a clade 2 HPAI A(H5N1) vi-
rus (GenBank accession no. ABR13964), R221 has been 
shown in influenza A/H3 (R225 by H3 numbering) to 
slightly increase binding to human erythrocytes (6). Other 
mutations of interest in A/Alberta/01/2014 were D94N, 
S133A, S155N, and T156A. D94N decreased binding to 
α2,3 SA and increased it to α2,6 SA in a pseudotyping assay 
(7). S133A, together with T188I (not present in A/Alber-
ta/01/2014), increased binding to α2,6 SA by pseudotyping  
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Figure	 1.	 Neighbor-joining	
phylogenetic	 tree	 of	 the	
polymerase	 basic	 2	 (PB2)	
genes	 of	 H9N2	 subtype	 lineage	
avian	 influenza	 A	 viruses	 with	
A/Alberta/01/2014	 (GISAID	
accession	 no.	 EPI500778).	
The	 avian	 influenza	 A(H5N1)	
virus	 detected	 in	 Canada	 is	
underlined.	Major	lineages	of	the	
H9N2	 subtype–like	 PB2	 genes	
are	 depicted	 to	 the	 right	 of	 the	
phylogenetic	clusters.	Bootstraps	
generated	 from	 1,000	 replicates	
are	 shown	 at	 branch	 nodes.	
Scale	 bar	 represents	 nucleotide	
substitutions	 per	 site.	 GSAID,	
Global	Initiative	on	Sharing	Avian	
Influenza	Data.
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and glycan array assays (8). When together, S155N and 
T156A also increased binding to α2,6 SA (assayed with re-
sialated erythrocytes). T156A abrogates a N-glycosylation 
site and, when together with S223N (not found in A/Al-
berta/01/2014), may improve virus replication in the upper 
respiratory tract of ferrets (9); T156A is consistently found 
in ferret-adapted mutants capable of airborne transmission 
(5). The collective effects of all these mutations and their 
phenotypic manifestations are unclear.

Comparison of the HA amino acid sequence of A/Al-
berta/01/2014 with that of the nearest H5N1 clade 2.3.2.1c 
World Health Organization candidate vaccine virus (A/
duck/Vietnam/NCVD-1584/2012) identified only 2 aa 
substitutions in the HA1 region, R189K and G221R. Al-
though position 189 was within the putative antigenic site 
B, the overall conservation of sequence suggests that A/
Alberta/01/2014 is a close antigenic match to the candidate 
vaccine virus.
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Figure	 2.	 Neighbor-joining	
phylogenetic	 tree	 of	 the	
hemagglutinin	 (HA)	 genes	 of	
clade	 2.3.2.1	 highly	 pathogenic	
avian	 influenza	A(H5N1)	 viruses	
with	 A/Alberta/01/2014	 (GISAID	
accession	 no.	 EPI500771).	 The	
avian	 influenza	 A(H5N1)	 virus	
detected	in	Canada	is	underlined.	
The	 nearest	 reassortant	 World	
Health	 Organization	 candidate	
vaccine	 viruses	 (CVV)	 for	 each	
group	of	clade	2.3.2.1	are	denoted	
by	 CVV.	 Asterisks	 indicated	
viruses	 collected	 in	 2012–
2014.	 Amino	 acid	 differences	
at	 branch	 nodes	 indicate	 HA1	
substitutions	 relative	 to	 the	
nearest	 CVV	 for	 clade	 2.3.2.1	
viruses	 (group	 2.3.2.1c,	 A/duck/
Vie tnam/NCVD-1584/2012;	
group	 2.3.2.1b,	 A/barn-swallow/
HK/D10–1161/2010).	 Mutations	
to	 the	 right	 of	 each	 strain	 name	
indicate	 amino	 acid	 changes	
found	 only	 in	 that	 virus	 relative	
to	 the	 nearest	 CVV.	 Bootstraps	
generated	 from	 1,000	 replicates	
are	 shown	 at	 branch	 nodes.	
Scale	 bar	 represents	 nucleotide	
substitutions	 per	 site.	 Black	
arrowhead	 indicates	 position	 of	
clade	 2.3.2.1a.	 GSAID,	 Global	
Initiative	 on	 Sharing	 Avian	
Influenza	Data.



In agreement with Xu et al. (4), no mutations confer-
ring reduced susceptibility to neuraminidase inhibitors 
were identified for clade 2.3.2.1. The predicted amino acid 
sequence of the M2 protein did not reveal any changes as-
sociated with reduced susceptibility to adamantanes (10). 
Mutation V27I was found, but its significance is uncertain. 
Mutations N30D and T215A found in the M1 gene of A/
Alberta/01/2014 were associated with increased virulence 
in mice. The cumulative effect of these changes may result 
in increased lethality (11).

The PB2 sequence showed the presence of E627 in 
both the primary specimen and isolate, establishing the lack 
of a well-known mammalian adaptation motif (5,12). Ami-
no acid changes L89V, G309D, T339K, R477G, I495V, 
and K627E and a change to Met at the predicted position 
A676T (13) were noted in the A/Alberta/01/2014 isolate. 
These PB2 substitutions in conjunction with changes in the 
M1 and HA proteins (only some of which were identified) 
have been described to enhance polymerase activity and 
virulence in mice. Experiments in mice also demonstrated 
that compensatory amino acid substitutions in PB2 can 
rescue polymerase activity in K627E mutants (13). Lethal 
HPAI A(H5N1) isolates, such as A/quail/Vietnam/36/04, 
show the presence of E627, suggesting that compensatory 
mutations are possible in PB2 and other genes (14). The 
PB1 protein showed the P598L mutation reported to en-
hance polymerase activity in mammalian cells and mice 
(3). This change has been reported to enhance the poly-
merase activity of an attenuated human virus carrying the 
PB2 K627E mutation (15). Of the polymerase mutations 
hypothesized to increase the RNA polymerase activity of 
HPAI A(H5N1) viruses, namely P149S, R226H, K357I, 
and T515S, only two, 149S and 357T, were present in the 
A/Alberta/01/2014 isolate (3).

Mutations in the nucleoprotein gene reported to en-
hance replication efficiency, virulence, and transmission 
(3) were absent in the isolate. Several NS1 mutations re-
ported to increase virulence in mice were present in A/
Alberta/01/2014: P42S, D87E, L98F, and I101M; a 4-bp 
deletion from nt 80–84, along with the D92E shift; and 
the PDZ ligand domain (ESEV) at the C terminus (3). 
The multifunctional NS1 protein is a recognized viru-
lence determinant that counters the cellular innate im-
mune response, and the P42S change has been shown to 
antagonize interferon induction and prevent activation of 
the nuclear factor–κB and interferon regulatory factor–3 
pathways (16).

Conclusion
Analysis of the whole genome of HPAI A(H5N1) vi-

rus provides valuable insight into the presence of muta-
tions that may reflect adaptive changes, altered virulence, 
and/or transmission phenotype. Because of the unique 

manifestation of neurologic symptoms and encephalitis 
reported in this patient, additional studies are needed to 
understand the broader aspects of virus heterogeneity and 
its role in this fatal case.

Acknowledgments
We gratefully acknowledge the tremendous work of the clin-

ical and public health teams in Alberta involved in the manage-
ment and follow-up of this case and deeply appreciate the coop-
eration of the family during the investigation of this tragic event. 
We thank the technical laboratory staff for their work and contri-
butions to the confirmation and analysis of this influenza strain. 
We greatly appreciate and acknowledge the generous discussions 
and expert input of Nancy Cox and her team at the US Centers for 
Disease Control and Prevention.

Ms Pabbaraju is a senior laboratory scientist at the Provin-
cial Laboratory for Public Health. Her research focuses on the 
development of diagnostic tests for viral and bacterial pathogens 
as well as studies on the epidemiology of viruses.

References

  1. ProMED-mail. Fatal avian influenza A(H5N1) infection in a  
Canadian traveler. 2014 Jan 12 [cited 2014 Jan 24]. http:// 
www.promedmail.org, archive no. 20140112.2167282

  2. World Health Organization/World Organization for Animal Health/
Food and Agriculture Organization (WHO/OIE/FAO) H5N1  
Evolution Working Group, 2013. Revised and updated nomenclature 
for highly pathogenic avian influenza A (H5N1) viruses. Influenza 
Other Respir Viruses. 2014. Epub 2014 Jan 31. 

  3. Centers for Disease Control and Prevention. H5N1 Genetic Changes  
Inventory: a tool for influenza surveillance and preparedness  
[cited 2014 Jan 24]. http://www.cdc.gov/flu/avianflu/h5n1-genetic-
changes.htm

  4. Xu L, Bao L, Yuan J, Li F, Lv Q, Deng W, et al. Antigenicity and 
transmissibility of a novel clade 2.3.2.1 avian influenza H5N1  
virus. J Gen Virol. 2013;94:2616–26. http://dx.doi.org/10.1099/
vir.0.057778-0

  5. Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, 
Munster VJ, et al. Airborne transmission of influenza A/H5N1  
virus between ferrets. Science. 2012;336:1534–41. http://dx.doi.
org/10.1126/science.1213362

  6. Martín J, Wharton SA, Lin YP, Takemoto DK, Skehel JJ, Wiley DC, 
et al. Studies of the binding properties of influenza hemagglutinin 
receptor-site mutants. Virology. 1998;241:101–11. http://dx.doi.
org/10.1006/viro.1997.8958

  7. Su Y, Yang HY, Zhang BJ, Jia HL, Tien P. Analysis of a point  
mutation in H5N1 avian influenza virus hemagglutinin in relation to 
virus entry into live mammalian cells. Arch Virol. 2008;153:2253–
61. http://dx.doi.org/10.1007/s00705-008-0255-y

  8. Yang ZY, Wei CJ, Kong WP, Wu L, Xu L, Smith DF, et al.  
Immunization by avian H5 influenza hemagglutinin mutants with 
altered receptor binding specificity. Science. 2007;317:825–8.  
http://dx.doi.org/10.1126/science.1135165

  9. Wang W, Lu B, Zhou H, Suguitan AL Jr, Cheng X, Subbarao K,  
et al. Glycosylation at 158N of the hemagglutinin protein and  
receptor binding specificity synergistically affect the antigenicity and 
immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 
vaccine virus in ferrets. J Virol. 2010;84:6570–7. http://dx.doi.
org/10.1128/JVI.00221-10

DISPATCHES

890	 Emerging	Infectious	Diseases	•	www.cdc.gov/eid	•	Vol.	20,	No.	5,	May	2014



Influenza	A(H5N1)	Virus	from	Human,	North	America

10. Govorkova EA, Baranovich T, Seiler P, Armstrong J, Burnham A, 
Guan Y, et al. Antiviral resistance among highly pathogenic influenza  
A (H5N1) viruses isolated worldwide in 2002–2012 shows need 
for continued monitoring. Antiviral Res. 2013;98:297–304.  
http://dx.doi.org/10.1016/j.antiviral.2013.02.013

11. Fan S, Deng G, Song J, Tian G, Suo Y, Jiang Y, et al. Two amino 
acid residues in the matrix protein M1 contribute to the virulence 
difference of H5N1 avian influenza viruses in mice. Virology. 
2009;384:28–32. http://dx.doi.org/10.1016/j.virol.2008.11.044

12. Long JS, Howard WA, Núñez A, Moncorgé O, Lycett S, Banks J, 
et al. The effect of the PB2 mutation 627K on highly pathogenic 
H5N1 avian influenza virus is dependent on the virus lineage.  
J Virol. 2013;87:9983–96. http://dx.doi.org/10.1128/JVI.01399-13

13. Li J, Ishaq M, Prudence M, Xi X, Hu T, Liu Q, et al. Single mutation 
at the amino acid position 627 of PB2 that leads to increased virulence 
of an H5N1 avian influenza virus during adaptation in mice can be 
compensated by multiple mutations at other sites of PB2. Virus Res. 
2009;144:123–9. http://dx.doi.org/10.1016/j.virusres.2009.04.008

14. Salomon R, Franks J, Govorkova EA, Ilyushina NA, Yen HL, 
Hulse-Post DJ, et al. The polymerase complex genes contribute 
to the high virulence of the human H5N1 influenza virus isolate 
A/Vietnam/1203/04. J Exp Med. 2006;203:689–97. http://dx.doi.
org/10.1084/jem.20051938

15. Xu C, Hu WB, Xu K, He YX, Wang TY, Chen Z, et al. Amino acids 
473V and 598P of PB1 from an avian-origin influenza A virus con-
tribute to polymerase activity, especially in mammalian cells. J Gen 
Virol. 2012;93:531–40. http://dx.doi.org/10.1099/vir.0.036434-0

16. Jiao P, Tian G, Li Y, Deng G, Jiang Y, Liu C, et al. A single-amino-
acid substitution in the NS1 protein changes the pathogenicity of 
H5N1 avian influenza viruses in mice. J Virol. 2008;82:1146–54. 
http://dx.doi.org/10.1128/JVI.01698-07

Address for correspondence: Kevin Fonseca, Provincial Laboratory for 
Public Health, 3030 Hospital Dr NW, Calgary, AB T2N 4W4, Canada; 
email: kevin.fonseca@albertahealthservices.ca

	 Emerging	Infectious	Diseases	•	www.cdc.gov/eid	•	Vol.	20,	No.	5,	May	2014	 891




